Prym varieties and the Schottky problem for cubic threefolds

نویسنده

  • Sebastian Casalaina-Martin
چکیده

A theorem of Mumford’s states that for a smooth cubic threefold X, the intermediate Jacobian JX is a principally polarized abelian variety of dimension 5 whose theta divisor has a unique singular point, which has multiplicity three. This talk describes joint work with R. Friedman, in which we prove a converse: if A is a principally polarized abelian variety of dimension 5 whose theta divisor has a unique singular point, which has multiplicity three, then A is the intermediate Jacobian of a smooth cubic threefold. The method of proof is to view A as a generalized Prym variety and to use this description to analyze the singular points of the theta divisor. Along these lines, I will also discuss recent work which gives a sharp upper bound on the multiplicity of a point on the theta divisor of an irreducible principally polarized abelian variety of dimension at most five.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 1 M ay 2 00 4 Singularities of the Prym Theta Divisor

For the Jacobian of a curve, the Riemann singularity theorem gives a geometric interpretation of the singularities of the theta divisor in terms of special linear series on the curve. This paper proves an analogous theorem for Prym varieties. Applications of this theorem to cubic threefolds, and Prym varieties of dimension five, are also considered.

متن کامل

S ep 2 00 8 Singularities of the Prym Theta Divisor Sebastian

For the Jacobian of a curve, the Riemann singularity theorem gives a geometric interpretation of the singularities of the theta divisor in terms of special linear series on the curve. This paper proves an analogous theorem for Prym varieties. Applications of this theorem to cubic threefolds, and Prym varieties of dimension five, are also considered.

متن کامل

Cubic Threefolds and Abelian Varieties of Dimension Five

Cubic threefolds have been studied in algebraic geometry since classical times. In [5], Clemens and Griffiths proved that the intermediate Jacobian JX of a smooth cubic threefold is not isomorphic as a principally polarized abelian variety to a product of Jacobians of curves, which implies the irrationality of X. They also established the Torelli theorem for cubic threefolds: the principally po...

متن کامل

The Uniformization of the Moduli Space of Principally Polarized Abelian 6-folds

Introduction 1 1. Kanev’s construction and Prym-Tyurin varieties of E6-type 7 2. The E6 lattice 11 3. Degenerations of Jacobians and Prym varieties 13 4. Degenerations of Prym-Tyurin-Kanev varieties 15 5. The global geometry of the Hurwitz space of E6-covers 20 6. The Prym-Tyurin map along boundary components of Hur 30 7. Ordinary Prym varieties regarded as Prym-Tyurin-Kanev varieties 39 8. The...

متن کامل

MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM

We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006